

Idaho National Engineering and Environmental Laboratory

Cesium and Strontium Extraction Process Experience

T. A. Todd

Idaho National Engineering and Environmental Laboratory

January 22, 2003

Background

- Cesium-137 and strontium-90 are the primary heat generators in SNF
- Short half-lives facilitate storage/disposal alternatives until decayed (~300 years)
- Extensive research has been performed on Cs/Sr separation methods from wastes generated from SNF treatment for the last 30 years

UREX+ Process for LWR Spent Fuel

Radionuclide Separations

Actinides	Strontium	<u>Cesium</u>		
PUREX	18C6 (SREX)	CDC*		
UREX	CDC* (w/PEG)	Crown ethers		
CMPO (TRUEX)		Calixarenes		
DHDECMP				
TRPO	*cobalt dicarbollide			
Diamides				
		AMP		
Precipitation		CST		
		Hexacyanoferrate		
Universal Extraction Process (UNEX)				

Cesium Extraction

- Cobalt Dicarbollide (CDC)
 - Use of CDC to extract Cs reported by Rais, et al. in 1970's
 - CDC based extraction processes developed jointly by Czech and Russian scientists in 80's and 90's
 - Research in the US (LANL and INEEL) over last 10 years with Czech and Russian collaborations
 - INEEL actual waste flowsheet test resulted in 99.998% Cs removal

Cesium Extraction (continued)

Crown ethers/Calixarenes

- Several processes developed around 18C6 and 21C7 –based extractants
- Calixarene extractants developed in France and
- recently developed and applied by ORNL for SRS Alt. Salt Process
- Real waste demos completed at SRS

Figure 1. Calix[4] arene-bis-(2,3-naphtho-crown-6) (left) and bis-(tert-butylbenzo)-21-crown-7 (right).

Strontium Extraction

- Strontium Extraction (SREX) process developed by Horwitz et al. from ANL in early 90's
- Extensive worldwide testing in mid-90's
- SREX process demonstrated in centrifugal contactors with actual INEEL tank wastes

Combined Cs/Sr Extraction Processes

- Cobalt Dicarbollide with polyethylene glycol
 - Co-extraction of Sr with PEG first reported by Rais et al. in 70's, later developed by Czech and Russian scientists
 - Implemented on large-scale to separate mega-curie quantities of Cs & Sr from MAYAK p.a. (1996-pres.)
 - Process modified for potential implementation in U.S. and demonstrated on actual INEEL tank waste.

Combined Cs/Sr Extraction Processes

- Combined crown ether system
 - Developed in 90's by Horwitz et. al at ANL
 - Process utilized SREX extractant (DtBuCH18C6) + substituted dibenzo18C6 extractant
 - Tested in centrifugal contactors with simulated INEEL wastes at ANL
 - Very high separation/recovery of Cs and Sr
 - Poor stability of modified 18C6 in acidic media
- Potential for combined process based on DtBuCH18C6 and calixarene extractants

Combined Cs/Sr Extraction Processes

- Universal Extraction (UNEX) Process
 - CDC/PEG with actinide/RE extractant (CMPO)
 - Development of new diluent (phenyltrifluromethyl sulfone) to replace nitroaromatic compounds
 - Exceptional acidic and radiolytic stability
 - Demonstrated on actual INEEL tank waste,
 dissolved calcine and Russian (MCC) tank waste

UNEX Test Results with Actual Radioactive Wastes in 2-cm Centrifugal Contactors

Removal Efficiencies

	INEEL	INEEL	Russian
	Tank	Calcine	Tank
Gross a	99.96%	99.92%	99.7%
Cesium-137	99.4%	99.99%	99.95%
Strontium-90	99.995%	99.73 %	99.99%

INEEL 2-cm centrifugal contactors in hot cell

Conclusions

- Cesium and strontium can be effectively removed from acidic solutions resulting from SNF processing
- Testing to date has been with complex, high salt waste streams. Anticipated feed composition from proposed AFCI flowsheets would be less challenging
- Combined Cs/Sr extraction processes offer high throughput separations in a single process
- Many Cs/Sr processes have been demonstrated on actual radioactive solutions –ranging to full-scale implementation on > 1 million liters